Problems 33

that the same universal law of gravitation should apply to a falling apple and to the planets in orbit about the sun, at 10^{12} times the distance.

Problems

- 1.1 An electron of energy 20 GeV is deflected through an angle of 5° in an elastic collision with a stationary proton. What is the value of the square of the 4-momentum transfer, q^2 , and down to what approximate distance does such a collision probe the internal structure of the proton? (The mass of the electron can be neglected compared with the energies involved. The proton mass Mc^2 is 0.938 GeV.)
- 1.2 The flux of primary cosmic rays averaged over the Earth's surface is approximately $1 \text{ cm}^{-2} \text{ s}^{-1}$, and their average kinetic energy is 3 GeV. Show that the power transferred to the Earth from cosmic rays is about 2.5 gigawatt. (Earth radius = 6400 km.)
- 1.3 The values of mc^2 for the pion π^+ and muon μ^+ are 139.57 MeV and 105.66 MeV respectively. Find the kinetic energy of the muon in the decay $\pi^+ \to \mu^+ + \nu_\mu$ assuming that the neutrino is massless. For a neutrino of finite but very small mass m_ν show that, compared with the case of a massless neutrino, the muon momentum would be reduced by the fraction

$$\frac{\Delta p}{p} = -\frac{m_{\nu}^2 (m_{\pi}^2 + m_{\mu}^2)}{(m_{\pi}^2 - m_{\mu}^2)^2} \simeq -\frac{4m_{\nu}^2}{10^4}$$

where m_{ν} is in MeV.

- 1.4 Deduce an expression for the energy of a γ -ray from the decay of the neutral pion, $\pi^0 \to 2\gamma$, in terms of the mass m, energy E and velocity βc of the pion and the angle of emission θ in the pion rest frame. Show that if the pion has spin zero, so that the angular distribution is isotropic, the laboratory energy spectrum of the γ -rays will be flat, extending from $E(1+\beta)/2$ to $E(1-\beta)/2$. Find an expression for the disparity D (the ratio of energies) of the γ -rays and show that D>3 in half the decays and D>7 in one quarter of them.
- 1.5 (a) A negative muon, when brought to rest in liquid hydrogen, can form a molecular ion H₂⁺ by displacing an electron. Why? (b) Hydrogen contains a small amount of the heavier isotope deuterium, and it is found that negative muons stopping in hydrogen eventually form molecular ions HD⁺. Why? (c) What is the typical internuclear distance in such an ion? (d) If the two nuclei fuse to form ³He, what may happen to the muon?
- 1.6 The ρ meson is a particle of spin J=1 and mass 770 MeV/ c^2 occurring in three charge states ρ^+ , ρ^0 , ρ^- . It decays to a pair of spinless pions. Show that while $\rho^\pm \to \pi^0 \pi^\pm$ and $\rho^0 \to \pi^+ \pi^-$ are allowed, $\rho^0 \to \pi^0 \pi^0$ is forbidden.
- 1.7 State which of the following reactions are allowed by the conservation laws and which

Answers to problems

Chapter 1

1.1 $q^2 = 2.81 \text{ GeV}^2$; 0.74 fm.

1.4
$$E_{\nu} = E_{\pi}(1 + \beta \cos \theta)/2$$
; $dN/dD = 2/(D+1)^2$.

1.5

- (a) Binding energy of $(H_2\mu)^+$ larger than $(H_2e)^+$.
- (b) Reduced mass $\mu_H = m_{\mu}/(1 + m_{\mu}/M_H) < \mu_D = m_{\mu}/(1 + m_{\mu}/M_D)$.
- (c) 3×10^{-11} cm.
- (d) HD \rightarrow ³He + μ + 5.4 MeV.

(For references, see G. Feinberg and L. Lederman, Ann. Rev. Nucl. Sci. 13, 431, 1963.)

- **1.7** Reactions 1,2,5 allowed. Reaction 3 forbidden by lepton conservation. Reaction 4 forbidden by conservation of strangeness in strong interactions.
- 1.8 $6.7 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$.
- **1.9** (b) 26.5 cm, (c) 10^{-7} .

1.10

- (a) $\theta_{\text{max}} = 0.80 \text{ rad}, p = 7.96 \text{ GeV}/c.$
- (b) $\theta = 0$, p = 9.21 GeV/c, $q_{\text{max}}^2 = 15.6 \text{ GeV}^2$.

Chapter 2

2.1 $\simeq 10^6$.

2.2
$$|\Delta e/e| > \sqrt{(G_N M^2/e^2)} = 10^{-18}$$
.

2.4 17.6 mb.